Provider Reference
LLM provider implementations with unified API.
Overview
PromptKit supports multiple LLM providers through a common interface:
- OpenAI: GPT-4, GPT-4o, GPT-3.5
- Anthropic Claude: Claude 3.5 Sonnet, Claude 3 Opus, Claude 3 Haiku
- Google Gemini: Gemini 1.5 Pro, Gemini 1.5 Flash
- Mock: Testing and development
All providers implement the Provider interface for text completion and ToolSupport interface for function calling.
Core Interfaces
Provider
type Provider interface {
ID() string
Predict(ctx context.Context, req PredictionRequest) (PredictionResponse, error)
// Streaming
PredictStream(ctx context.Context, req PredictionRequest) (<-chan StreamChunk, error)
SupportsStreaming() bool
ShouldIncludeRawOutput() bool
Close() error
// Cost calculation
CalculateCost(inputTokens, outputTokens, cachedTokens int) types.CostInfo
}
ToolSupport
type ToolSupport interface {
Provider
// Convert tools to provider format
BuildTooling(descriptors []*ToolDescriptor) (interface{}, error)
// Execute with tools
PredictWithTools(
ctx context.Context,
req PredictionRequest,
tools interface{},
toolChoice string,
) (PredictionResponse, []types.MessageToolCall, error)
}
MultimodalSupport
Providers that support images, audio, or video inputs implement MultimodalSupport:
type MultimodalSupport interface {
Provider
// Get supported multimodal capabilities
GetMultimodalCapabilities() MultimodalCapabilities
// Execute with multimodal content
PredictMultimodal(ctx context.Context, req PredictionRequest) (PredictionResponse, error)
// Stream with multimodal content
PredictMultimodalStream(ctx context.Context, req PredictionRequest) (<-chan StreamChunk, error)
}
MultimodalCapabilities:
type MultimodalCapabilities struct {
SupportsImages bool // Can process image inputs
SupportsAudio bool // Can process audio inputs
SupportsVideo bool // Can process video inputs
ImageFormats []string // Supported image MIME types
AudioFormats []string // Supported audio MIME types
VideoFormats []string // Supported video MIME types
MaxImageSizeMB int // Max image size (0 = unlimited/unknown)
MaxAudioSizeMB int // Max audio size (0 = unlimited/unknown)
MaxVideoSizeMB int // Max video size (0 = unlimited/unknown)
}
Provider Multimodal Support:
| Provider | Images | Audio | Video | Notes |
|---|---|---|---|---|
| OpenAI GPT-4o/4o-mini | ✅ | ❌ | ❌ | JPEG, PNG, GIF, WebP |
| Anthropic Claude 3.5 | ✅ | ❌ | ❌ | JPEG, PNG, GIF, WebP |
| Google Gemini 1.5 | ✅ | ✅ | ✅ | Full multimodal support |
Helper Functions:
// Check if provider supports multimodal
func SupportsMultimodal(p Provider) bool
// Get multimodal provider (returns nil if not supported)
func GetMultimodalProvider(p Provider) MultimodalSupport
// Check specific media type support
func HasImageSupport(p Provider) bool
func HasAudioSupport(p Provider) bool
func HasVideoSupport(p Provider) bool
// Check format compatibility
func IsFormatSupported(p Provider, contentType string, mimeType string) bool
// Validate message compatibility
func ValidateMultimodalMessage(p Provider, msg types.Message) error
Usage Example:
// Check capabilities
if providers.HasImageSupport(provider) {
caps := providers.GetMultimodalProvider(provider).GetMultimodalCapabilities()
fmt.Printf("Max image size: %d MB\n", caps.MaxImageSizeMB)
}
// Send multimodal request
req := providers.PredictionRequest{
System: "You are a helpful assistant.",
Messages: []types.Message{
{
Role: "user",
Parts: []types.ContentPart{
{Type: "text", Text: "What's in this image?"},
{
Type: "image",
Media: &types.MediaContent{
Type: "image",
MIMEType: "image/jpeg",
Data: imageBase64,
},
},
},
},
},
}
if mp := providers.GetMultimodalProvider(provider); mp != nil {
resp, err := mp.PredictMultimodal(ctx, req)
}
MultimodalToolSupport
Providers that support both multimodal content and function calling implement MultimodalToolSupport:
type MultimodalToolSupport interface {
MultimodalSupport
ToolSupport
// Execute with both multimodal content and tools
PredictMultimodalWithTools(
ctx context.Context,
req PredictionRequest,
tools interface{},
toolChoice string,
) (PredictionResponse, []types.MessageToolCall, error)
}
Usage Example:
// Use images with tool calls
tools, _ := provider.BuildTooling(toolDescriptors)
resp, toolCalls, err := provider.PredictMultimodalWithTools(
ctx,
multimodalRequest,
tools,
"auto",
)
// Response contains both text and any tool calls
fmt.Println(resp.Content)
for _, call := range toolCalls {
fmt.Printf("Tool called: %s\n", call.Name)
}
Request/Response Types
PredictionRequest
type PredictionRequest struct {
System string
Messages []types.Message
Temperature float32
TopP float32
MaxTokens int
Seed *int
Metadata map[string]interface{}
}
PredictionResponse
type PredictionResponse struct {
Content string
Parts []types.ContentPart // Multimodal content
CostInfo *types.CostInfo
Latency time.Duration
Raw []byte // Raw API response
RawRequest interface{} // Raw API request
ToolCalls []types.MessageToolCall
}
ProviderDefaults
type ProviderDefaults struct {
Temperature float32
TopP float32
MaxTokens int
Pricing Pricing
}
Pricing
type Pricing struct {
InputCostPer1K float64 // Per 1K input tokens
OutputCostPer1K float64 // Per 1K output tokens
}
OpenAI Provider
Constructor
func NewOpenAIProvider(
id string,
model string,
baseURL string,
defaults ProviderDefaults,
includeRawOutput bool,
) *OpenAIProvider
Parameters:
id: Provider identifier (e.g., “openai-gpt4”)model: Model name (e.g., “gpt-4o-mini”, “gpt-4-turbo”)baseURL: Custom API URL (empty for defaulthttps://api.openai.com/v1)defaults: Default parameters and pricingincludeRawOutput: Include raw API response in output
Environment:
OPENAI_API_KEY: Required API key
Example:
provider := openai.NewOpenAIProvider(
"openai",
"gpt-4o-mini",
"", // Use default URL
openai.DefaultProviderDefaults(),
false,
)
defer provider.Close()
Supported Models
| Model | Context | Cost (Input/Output per 1M tokens) |
|---|---|---|
gpt-4o | 128K | $2.50 / $10.00 |
gpt-4o-mini | 128K | $0.15 / $0.60 |
gpt-4-turbo | 128K | $10.00 / $30.00 |
gpt-4 | 8K | $30.00 / $60.00 |
gpt-3.5-turbo | 16K | $0.50 / $1.50 |
Features
- ✅ Streaming support
- ✅ Function calling
- ✅ Multimodal (vision)
- ✅ JSON mode
- ✅ Seed for reproducibility
- ✅ Token counting
Tool Support
// Create tool provider
toolProvider := openai.NewOpenAIToolProvider(
"openai",
"gpt-4o-mini",
"",
openai.DefaultProviderDefaults(),
false,
nil, // Additional config
)
// Build tools in OpenAI format
tools, err := toolProvider.BuildTooling(toolDescriptors)
if err != nil {
log.Fatal(err)
}
// Execute with tools
response, toolCalls, err := toolProvider.PredictWithTools(
ctx,
req,
tools,
"auto", // Tool choice: "auto", "required", "none", or specific tool
)
Anthropic Claude Provider
Constructor
func NewClaudeProvider(
id string,
model string,
baseURL string,
defaults ProviderDefaults,
includeRawOutput bool,
) *ClaudeProvider
Environment:
ANTHROPIC_API_KEY: Required API key
Example:
provider := claude.NewClaudeProvider(
"claude",
"claude-3-5-sonnet-20241022",
"", // Use default URL
claude.DefaultProviderDefaults(),
false,
)
defer provider.Close()
Supported Models
| Model | Context | Cost (Input/Output per 1M tokens) |
|---|---|---|
claude-3-5-sonnet-20241022 | 200K | $3.00 / $15.00 |
claude-3-opus-20240229 | 200K | $15.00 / $75.00 |
claude-3-haiku-20240307 | 200K | $0.25 / $1.25 |
Features
- ✅ Streaming support
- ✅ Tool calling
- ✅ Multimodal (vision)
- ✅ Extended context (200K tokens)
- ✅ Prompt caching
- ✅ System prompts
Tool Support
toolProvider := claude.NewClaudeToolProvider(
"claude",
"claude-3-5-sonnet-20241022",
"",
claude.DefaultProviderDefaults(),
false,
)
response, toolCalls, err := toolProvider.PredictWithTools(ctx, req, tools, "auto")
Google Gemini Provider
Constructor
func NewGeminiProvider(
id string,
model string,
baseURL string,
defaults ProviderDefaults,
includeRawOutput bool,
) *GeminiProvider
Environment:
GEMINI_API_KEY: Required API key
Example:
provider := gemini.NewGeminiProvider(
"gemini",
"gemini-1.5-flash",
"",
gemini.DefaultProviderDefaults(),
false,
)
defer provider.Close()
Supported Models
| Model | Context | Cost (Input/Output per 1M tokens) |
|---|---|---|
gemini-1.5-pro | 2M | $1.25 / $5.00 |
gemini-1.5-flash | 1M | $0.075 / $0.30 |
Features
- ✅ Streaming support
- ✅ Function calling
- ✅ Multimodal (vision, audio, video)
- ✅ Extended context (up to 2M tokens)
- ✅ Grounding with Google Search
Tool Support
toolProvider := gemini.NewGeminiToolProvider(
"gemini",
"gemini-1.5-flash",
"",
gemini.DefaultProviderDefaults(),
false,
)
response, toolCalls, err := toolProvider.PredictWithTools(ctx, req, tools, "auto")
Mock Provider
For testing and development.
Constructor
func NewMockProvider(
id string,
model string,
includeRawOutput bool,
) *MockProvider
Example:
provider := mock.NewMockProvider("mock", "test-model", false)
// Configure responses
provider.AddResponse("Hello", "Hi there!")
provider.AddResponse("What is 2+2?", "4")
With Repository
// Custom response repository
repo := &CustomMockRepository{
responses: map[string]string{
"hello": "Hello! How can I help?",
"bye": "Goodbye!",
},
}
provider := mock.NewMockProviderWithRepository("mock", "test-model", false, repo)
Tool Support
toolProvider := mock.NewMockToolProvider("mock", "test-model", false, nil)
// Configure tool call responses
toolProvider.ConfigureToolResponse("get_weather", `{"temp": 72, "conditions": "sunny"}`)
Usage Examples
Basic Completion
import (
"context"
"github.com/AltairaLabs/PromptKit/runtime/providers/openai"
)
provider := openai.NewOpenAIProvider(
"openai",
"gpt-4o-mini",
"",
openai.DefaultProviderDefaults(),
false,
)
defer provider.Close()
req := providers.PredictionRequest{
System: "You are a helpful assistant.",
Messages: []types.Message{
{Role: "user", Content: "What is 2+2?"},
},
Temperature: 0.7,
MaxTokens: 100,
}
ctx := context.Background()
response, err := provider.Predict(ctx, req)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", response.Content)
fmt.Printf("Cost: $%.6f\n", response.CostInfo.TotalCost)
fmt.Printf("Latency: %v\n", response.Latency)
Streaming Completion
streamChan, err := provider.PredictStream(ctx, req)
if err != nil {
log.Fatal(err)
}
var fullContent string
for chunk := range streamChan {
if chunk.Error != nil {
log.Printf("Stream error: %v\n", chunk.Error)
break
}
if chunk.Delta != "" {
fullContent += chunk.Delta
fmt.Print(chunk.Delta)
}
if chunk.Done {
fmt.Printf("\n\nComplete! Tokens: %d\n", chunk.TokenCount)
}
}
With Function Calling
toolProvider := openai.NewOpenAIToolProvider(
"openai",
"gpt-4o-mini",
"",
openai.DefaultProviderDefaults(),
false,
nil,
)
// Define tools
toolDescs := []*providers.ToolDescriptor{
{
Name: "get_weather",
Description: "Get current weather for a location",
InputSchema: json.RawMessage(`{
"type": "object",
"properties": {
"location": {"type": "string", "description": "City name"}
},
"required": ["location"]
}`),
},
}
// Build tools in provider format
tools, err := toolProvider.BuildTooling(toolDescs)
if err != nil {
log.Fatal(err)
}
// Execute with tools
req.Messages = []types.Message{
{Role: "user", Content: "What's the weather in San Francisco?"},
}
response, toolCalls, err := toolProvider.PredictWithTools(ctx, req, tools, "auto")
if err != nil {
log.Fatal(err)
}
// Process tool calls
for _, call := range toolCalls {
fmt.Printf("Tool: %s\n", call.Name)
fmt.Printf("Args: %s\n", call.Arguments)
}
Multimodal (Vision)
// Create message with image
msg := types.Message{
Role: "user",
Content: "What's in this image?",
Parts: []types.ContentPart{
{
Type: "image",
ImageURL: &types.ImageURL{
URL: "...",
},
},
},
}
req.Messages = []types.Message{msg}
response, err := provider.Predict(ctx, req)
Cost Calculation
// Manual cost calculation
costInfo := provider.CalculateCost(
1000, // Input tokens
500, // Output tokens
0, // Cached tokens
)
fmt.Printf("Input cost: $%.6f\n", costInfo.InputCost)
fmt.Printf("Output cost: $%.6f\n", costInfo.OutputCost)
fmt.Printf("Total cost: $%.6f\n", costInfo.TotalCost)
Custom Provider Configuration
// Custom pricing
customDefaults := providers.ProviderDefaults{
Temperature: 0.8,
TopP: 0.95,
MaxTokens: 2000,
Pricing: providers.Pricing{
InputCostPer1K: 0.0001,
OutputCostPer1K: 0.0002,
},
}
provider := openai.NewOpenAIProvider(
"custom-openai",
"gpt-4o-mini",
"",
customDefaults,
true, // Include raw output
)
Configuration
Default Provider Settings
OpenAI:
func DefaultProviderDefaults() ProviderDefaults {
return ProviderDefaults{
Temperature: 0.7,
TopP: 1.0,
MaxTokens: 2000,
Pricing: Pricing{
InputCostPer1K: 0.00015, // gpt-4o-mini
OutputCostPer1K: 0.0006,
},
}
}
Claude:
func DefaultProviderDefaults() ProviderDefaults {
return ProviderDefaults{
Temperature: 0.7,
TopP: 1.0,
MaxTokens: 4096,
Pricing: Pricing{
InputCostPer1K: 0.003, // claude-3-5-sonnet
OutputCostPer1K: 0.015,
},
}
}
Gemini:
func DefaultProviderDefaults() ProviderDefaults {
return ProviderDefaults{
Temperature: 0.7,
TopP: 0.95,
MaxTokens: 8192,
Pricing: Pricing{
InputCostPer1K: 0.000075, // gemini-1.5-flash
OutputCostPer1K: 0.0003,
},
}
}
Environment Variables
All providers support environment variable configuration:
OPENAI_API_KEY: OpenAI authenticationANTHROPIC_API_KEY: Anthropic authenticationGEMINI_API_KEY: Google Gemini authenticationOPENAI_BASE_URL: Custom OpenAI-compatible endpointANTHROPIC_BASE_URL: Custom Claude endpointGEMINI_BASE_URL: Custom Gemini endpoint
Best Practices
1. Resource Management
// Always close providers
provider := openai.NewOpenAIProvider(...)
defer provider.Close()
2. Error Handling
response, err := provider.Predict(ctx, req)
if err != nil {
// Check for specific error types
if strings.Contains(err.Error(), "rate_limit_exceeded") {
// Implement backoff
time.Sleep(time.Second * 5)
return retry()
}
return err
}
3. Cost Monitoring
// Track costs across requests
var totalCost float64
for _, result := range results {
totalCost += result.CostInfo.TotalCost
}
fmt.Printf("Total spend: $%.6f\n", totalCost)
4. Timeout Management
// Use context timeout
ctx, cancel := context.WithTimeout(context.Background(), 30*time.Second)
defer cancel()
response, err := provider.Predict(ctx, req)
5. Streaming Best Practices
// Always drain channel
streamChan, err := provider.PredictStream(ctx, req)
if err != nil {
return err
}
for chunk := range streamChan {
if chunk.Error != nil {
// Handle error but continue draining
log.Printf("Error: %v", chunk.Error)
continue
}
processChunk(chunk)
}
Performance Considerations
Latency
- OpenAI: 200-500ms TTFT, 1-3s total for short responses
- Claude: 300-600ms TTFT, similar total latency
- Gemini: 150-400ms TTFT, faster for simple queries
Throughput
- Rate limits: Vary by provider and tier
- OpenAI: 3,500-10,000 RPM
- Claude: 4,000-50,000 RPM
- Gemini: 2,000-15,000 RPM
Cost Optimization
- Use mini/flash models for simple tasks
- Implement caching for repeated queries
- Use streaming for better UX (doesn’t reduce cost)
- Monitor token usage and set appropriate
MaxTokens
See Also
- MediaLoader - Unified media loading
- Pipeline Reference - Using providers in pipelines
- Tools Reference - Function calling
- Provider How-To - Configuration guide
- Provider Explanation - Architecture details
MediaLoader
Unified interface for loading media content from various sources (inline data, storage references, file paths, URLs).
Overview
MediaLoader abstracts media access, allowing providers to load media transparently regardless of where it’s stored. This is essential for media externalization, where large media is stored on disk instead of being kept in memory.
import "github.com/AltairaLabs/PromptKit/runtime/providers"
loader := providers.NewMediaLoader(providers.MediaLoaderConfig{
StorageService: fileStore,
HTTPTimeout: 30 * time.Second,
MaxURLSizeBytes: 50 * 1024 * 1024, // 50 MB
})
Type Definition
type MediaLoader struct {
// Unexported fields
}
Constructor
NewMediaLoader
Creates a new MediaLoader with the specified configuration.
func NewMediaLoader(config MediaLoaderConfig) *MediaLoader
Parameters:
config- MediaLoaderConfig with storage service and options
Returns:
*MediaLoader- Ready-to-use media loader
Example:
import (
"github.com/AltairaLabs/PromptKit/runtime/providers"
"github.com/AltairaLabs/PromptKit/runtime/storage/local"
)
fileStore := local.NewFileStore(local.FileStoreConfig{
BaseDir: "./media",
})
loader := providers.NewMediaLoader(providers.MediaLoaderConfig{
StorageService: fileStore,
HTTPTimeout: 30 * time.Second,
MaxURLSizeBytes: 50 * 1024 * 1024,
})
Configuration
MediaLoaderConfig
Configuration for MediaLoader instances.
type MediaLoaderConfig struct {
StorageService storage.MediaStorageService // Required for storage references
HTTPTimeout time.Duration // Timeout for URL fetches
MaxURLSizeBytes int64 // Max size for URL content
}
Fields:
StorageService - Media storage backend
- Required if loading from storage references
- Typically a FileStore or cloud storage backend
- Set to nil if not using media externalization
HTTPTimeout - HTTP request timeout for URLs
- Default: 30 seconds
- Applies to URL fetches only
- Set to 0 for no timeout
MaxURLSizeBytes - Maximum size for URL content
- Default: 50 MB
- Prevents downloading huge files
- Returns error if content larger
Methods
GetBase64Data
Loads media content from any source and returns base64-encoded data.
func (l *MediaLoader) GetBase64Data(
ctx context.Context,
media *types.MediaContent,
) (string, error)
Parameters:
ctx- Context for cancellation and timeoutmedia- MediaContent with one or more sources
Returns:
string- Base64-encoded media dataerror- Load errors (not found, timeout, size limit, etc.)
Source Priority:
Media is loaded from the first available source in this order:
- Data - Inline base64 data (if present)
- StorageReference - External storage (requires StorageService)
- FilePath - Local file system path
- URL - HTTP/HTTPS URL (with timeout and size limits)
Example:
// Load from any source
data, err := loader.GetBase64Data(ctx, media)
if err != nil {
log.Printf("Failed to load media: %v", err)
return err
}
// Use the data
fmt.Printf("Loaded %d bytes\n", len(data))
Usage Examples
Basic Usage
// Media with inline data
media := &types.MediaContent{
Type: "image",
MimeType: "image/png",
Data: "iVBORw0KGgoAAAANSUhEUg...", // Base64
}
data, err := loader.GetBase64Data(ctx, media)
// Returns media.Data immediately (already inline)
Load from Storage
// Media externalized to storage
media := &types.MediaContent{
Type: "image",
MimeType: "image/png",
StorageReference: &storage.StorageReference{
ID: "abc123-def456-ghi789",
Backend: "file",
},
}
data, err := loader.GetBase64Data(ctx, media)
// Loads from disk via StorageService
Load from File Path
// Media from local file
media := &types.MediaContent{
Type: "image",
MimeType: "image/jpeg",
FilePath: "/path/to/image.jpg",
}
data, err := loader.GetBase64Data(ctx, media)
// Reads file and converts to base64
Load from URL
// Media from HTTP URL
media := &types.MediaContent{
Type: "image",
MimeType: "image/png",
URL: "https://example.com/image.png",
}
data, err := loader.GetBase64Data(ctx, media)
// Fetches URL with timeout and size checks
Provider Integration
// Provider using MediaLoader
type MyProvider struct {
mediaLoader *providers.MediaLoader
}
func (p *MyProvider) Predict(ctx context.Context, req providers.PredictionRequest) (providers.PredictionResponse, error) {
// Load media from messages
for _, msg := range req.Messages {
for _, content := range msg.Content {
if content.Media != nil {
// Load media transparently
data, err := p.mediaLoader.GetBase64Data(ctx, content.Media)
if err != nil {
return providers.PredictionResponse{}, err
}
// Use data in API call
// ...
}
}
}
// Call LLM API
// ...
}
Error Handling
MediaLoader returns specific errors:
data, err := loader.GetBase64Data(ctx, media)
if err != nil {
switch {
case errors.Is(err, providers.ErrNoMediaSource):
// No source available (no Data, StorageReference, FilePath, or URL)
case errors.Is(err, providers.ErrMediaNotFound):
// Storage reference or file path not found
case errors.Is(err, providers.ErrMediaTooLarge):
// URL content exceeds MaxURLSizeBytes
case errors.Is(err, context.DeadlineExceeded):
// HTTP timeout or context cancelled
default:
// Other errors (permission, network, etc.)
}
}
Performance Considerations
Caching
MediaLoader does not cache loaded media. For repeated access:
// Cache loaded media yourself
mediaCache := make(map[string]string)
data, ok := mediaCache[media.StorageReference.ID]
if !ok {
var err error
data, err = loader.GetBase64Data(ctx, media)
if err != nil {
return err
}
mediaCache[media.StorageReference.ID] = data
}
Async Loading
For loading multiple media items in parallel:
type loadResult struct {
data string
err error
}
// Load media concurrently
results := make([]loadResult, len(mediaItems))
var wg sync.WaitGroup
for i, media := range mediaItems {
wg.Add(1)
go func(idx int, m *types.MediaContent) {
defer wg.Done()
data, err := loader.GetBase64Data(ctx, m)
results[idx] = loadResult{data, err}
}(i, media)
}
wg.Wait()
// Check results
for i, result := range results {
if result.err != nil {
log.Printf("Failed to load media %d: %v", i, result.err)
}
}
Best Practices
✅ Do:
- Create one MediaLoader per application (reuse)
- Set reasonable HTTP timeout (30s is good default)
- Set MaxURLSizeBytes to prevent abuse
- Handle errors gracefully (media may be unavailable)
- Use context for cancellation support
❌ Don’t:
- Don’t create MediaLoader per request (expensive)
- Don’t ignore errors (media may be corrupted/missing)
- Don’t set timeout too low (large images take time)
- Don’t allow unlimited URL sizes (DoS risk)
- Don’t cache without bounds (memory leak)
Integration with Media Storage
MediaLoader and media storage work together:
// 1. Set up storage
fileStore := local.NewFileStore(local.FileStoreConfig{
BaseDir: "./media",
})
// 2. Create loader with storage
loader := providers.NewMediaLoader(providers.MediaLoaderConfig{
StorageService: fileStore,
})
// 3. Use in SDK
manager, _ := sdk.NewConversationManager(
sdk.WithProvider(provider),
sdk.WithMediaStorage(fileStore), // Externalizes media
)
// 4. Provider automatically uses loader
// Media externalized by MediaExternalizer middleware
// Provider loads via MediaLoader when needed
// Application code remains unchanged
Flow:
1. User sends image → inline Data
2. LLM returns generated image → inline Data
3. MediaExternalizer → externalizes to storage, clears Data, adds StorageReference
4. State saved → only reference in Redis/Postgres
5. Next turn: Provider needs image → MediaLoader loads from StorageReference
6. Transparent to application code
See Also
- Storage Reference - Media storage backends
- Types Reference - MediaContent structure
- How-To: Configure Media Storage - Setup guide
- Explanation: Media Storage - Design and architecture